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Anomalous thresholds of the square diagram and their effect on the two-particle unitarity integral are 
discussed. It is shown for a certain diagram that the three-particle unitarity integral does not have counter 
terms which cancel the singularity from the two-particle contribution. Consistency with the crossed-channel 
unitarity is also discussed. 

I. INTRODUCTION 

ONE of the outstanding difficulties in dispersion 
theory is the problem of the unitarity integral 

involving more than two particles in the intermediate 
state. The difficulty, which arises from both kine-
matical complications and analytic properties of the 
production amplitude,1 has kept us from going any 
further than a two-particle approximation of the many 
particle system.2 

For the three-particle intermediate state, much work 
has been done by Gribov et al. for simple Feynman 
diagrams.3 In an attempt to obtain the Mandelstam 
double spectral function, they investigate analytic 
properties of the three-particle unitarity integral. 

In this note, we use the method of Gribov et al. to 
study the effect of the leading anomalous curve of the 
four-point function on the two-particle unitarity 
integral. Using a kinematically simple diagram as an 
illustration, we show that the three-particle unitarity 
integral has no terms which would cancel the singularity 
coming from the two-body integral. 

II. STATEMENT OF THE PROBLEM 

We consider the absorptive part of the amplitude 
associated with the sixth-order diagram of Fig. 1. As 
usual, the amplitude is regarded as a function of the 
two invariants 

t=(p2-p*y=(Pi-Ps)2. 

For sufficiently large values of s, one should take into 
account both two- and three-particle intermediate 
states in the ^-channel unitarity integral. We discuss, 
in particular, the effect of anomalous thresholds of the 
fourth-order diagram and their counter part coming 
from the three-particle intermediate state. 

For simplicity, we assume that all particles, except 
that of line 9, have unit mass. The fourth-order diagram, 

FIG. 1. Feynman diagram 
under consideration. The 
dashed lines indicate the 
unitarity cuts. 

resulting from the unitarity cut across lines 6 and 9, 
develops anomalous thresholds in both the s and 
(pi—ps)2 variables as the mass variable of the "external 
line" 9, M$2, becomes greater than 3. We denote this 
mass variable by o>. The anomalous thresholds are real 
if co is smaller^than 4. In the present discussion we 
restrict ourselves to the real anomalous threshold, i.e., 

3<co<4. (2) 

Regarded as a function of r— (Pi—pi)2, the amplitude 
for the box diagram has Landau singularities at 

T = Z V = 4 , 

T= r3= i+§w+f |>(4-a,);F, 
s(2s-5-oo)+lsi(2s-5-wy+3s(s-4:)(<ll-iy2m 

*(*-4) 

(3) 

corresponding, respectively, to the normal threshold, particle unitarity integral one can show that regarded 
the triangle anomalous threshold, and the singularity of as a function of t, the absorptive part corresponding to 
the leading Landau curve.4 After performing the two- the whole diagram has singularities at 

u--
s(s-a>-1) (TV- l ) + 2 [ 0 - c o - l ) 2 +toO--4)] 

(s- a>-l)2-4co 

2 { [ ( * - « - l)2+co ( * - 4 ) ] [ s ( 7 V - iy+s(s-a>-1) ( Z \ - 1 ) + ( * - « - l ) 2 +co(s-1)]} 1 ' 2 

(*- l - -co)2-4co 
(4) 

* Supported in part by the U. S. Air Force Office of Scientific Research, Air Research and Development Command 
1L. F. Cook and Jan Taroki, J. Math. Phys. 3, 1 (1962); Y. S. Kim, Phys. Rev. 124, 1632 (1961). 
2 L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962). 
3V. N. Gribov and I. T. Dyatlov, Zh. Eksperim. i Teor. Fiz. 42, 196 (1962); 42, 1268 (1962) [translation; Soviet Phys.-

JETP, 15, 140 (1962); 15, 879 (1962)]. 
4 J. Tarski, J. Math. Phys. 1? 149 (1960). 
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unless other unitarity integrals have counter terms. 
Here i takes the values 2, 3, or 4. 

As s goes to infinity, fa and fa approach 9, which is 
the normal threshold for the crossed / channel. In the 
case of the triangle singularity, fa gives rise to a singu
larity curve in the st plane which comes down asymp
totically below t—9. Gribov et al,, however, showed 
that this triangle singularity is cancelled by the counter 
term coming from the three-particle unitarity integral.3 

In this note, we extend the double-pinch argument 
of Gribov to the determination of the singularity nature 
of the contribution from the leading Landau curve of 
the box diagram. It will be shown that, contrary to the 
previous case, the three-particle unitarity integral has 
no singularities which would cancel fa, and, therefore, 
that the leading curve fa is the singularity curve of the 
whole diagram. 

We observe here that T± is smaller than 4 for the 
physical values of s under consideration and that it 
approaches 4 as s goes to infinity. It will also be shown 
that, in spite of this, the leading curve never comes 
down below t=9. This conclusion is consistent with 
the unitarity in the crossed / channel. 

III. SOLUTION TO THE PROBLEM 

Let us now consider the unitarity cut across the 
three lines 5, 7, and 6. According to Gribov et al., the 

unitarity integral takes the form 
,(V f i-l)2 dj3 fy+ dy 

A™(s,t) = ' 
/ j - «y 7 . c^ i f t f t 7 ) ] i / 8 

da 
X •, (5) 

where 
a ± = K 3 + J - 0 ) 

±|(( /3-4/0)[(H- l- /3)2-4s]}"2 , 

7±=l (3+0-* ) 
± M ( * - 4 A ) [ ( * + 1 - | 8 ) , - 4 J ] } 1 ' * > 

X1(/)8,7) = 45 (5 -4 ) 7
2 +45 [2 (5 -4 )+K S - l - / 3 ) ]7 

- [ (H - l -« 2 -4s ]H-4 [2 (s+ l - /3 )2 
-&r -s<>- l -30) ] * -4s(s-4) , 

#2(7,«,J3) = D Y 2 - 2 7 0 3 + 1 W - 1 ) 2 > 2 

- 2 ^ ( 7 - / 3 - l ) + [ 2 ( / 3 - l ) 2 

+ 7 [ 7 - 3-|8)]}a+ ( 5 - 1)2(7-4)T . 

Constant factors have been suppressed in Eq. (5). 
Evaluating the last integral, we obtain the double 

integral form 
r(vs-i)2 p(fi,s,t) 

A"»(s,t) = 4 , f ( 6 ) 
Ji p-o> 

where 

F(0,s,D=f • 
J y-

dy 
ln-

(«_-l){/(+>03,7)+[H^7)]1/2g(+)(/3,7)} 

l^Q&v)!! 03,7)]
1/2 (a+-1){/<-> d3,y)+lH 03,7)]1/2g(-> (fry)) 

/(±)(^7) = 5 ( a ± + 3 - ^ ) 7 2 + 0 3 - l ) 2 ( a ± + 2 ) 4 - { a ± C G 8 - l ) - ^ ( / 3 + l ) ] + [ 4 ( 5 - l ) 2 - ^ + l ) - 0 3 - 3 ) ] } 7 , 

g ( ± ) ^7) = l{(5- l -a ± )C(^+l~fr 2 -45] 1 / 2 - | (27-3+5-f r [ [ (5+l - f r 2 -45] 1 «=F(5+ J 8- l )03-4/^) 1 / 2 ]} , 

H(j3,y) = s(s-4:)y2-2s(2s-5-p)y-3(p-l¥. 

(7) 

Again, constant factors have been suppressed in Eq. (6). 
In the following, we shall first study the integrand 

in Eq. (7). We shall then investigate analytic properties 
of F(P,s,t) and, eventually, the absorptive part A^^Syt). 

Let us first consider the singularity curves of the 
integrand in the y(3 plane. The logarithmic function 
gives logarithmic singularities on the ellipse 

( 7 -2 )»+08-2)»- (7 -2)08-2) = 3. (8) 

We shall call this ''ellipse 8." 
The H(j3,y) factor inside the square root sign of the 

denominator together with the logarithmic function 
gives singularities on the section of the hyperbola 

s(s-4:)yZ-2s(2s-5-p)y-3(s-1)2=0, (9) 

which is tangent to ellipse 8 at 
£ = & < 3 ( s - l ) 2 A 2 - 3 s + 3 ] . (10) 

We call this ''hyperbola h(s)." As we increase s, this 
tangent point moves down and reaches its asymptotic 
value 3 for large s. 

Now for a fixed /?, O^PS (\A— I)2, the singularity 

7(0 = 1-
j - 4 

2 
{t(t+s-4;)£(s+l-t3y+s(j3-4:)-]yi>y (11) 

s—4 
due to the Ki(t,(3,y) factor, moves from the right toward 
the upper limit of the y integration as we increase / 
along the real axis. This singularity then reaches the 
upper end and drags the contour of the y integration 
to the right. As y{t) reaches a singularity on either 
ellipse 8 or hyperbola h(s), the y integration is pinched. 
In the y(3 plane of Fig. 2, singularities due to this 
coincidence are given by the ordinates of the points at 
which the curve y(t) intersects ellipse 8 or hyperbola 
h(s). The y{t) hyperbola intersects the ellipse twice. 
We call the ordinates of the intersection points j#i<+) (s,t) 
and /Si<->(V) with /31<

+)(^)>/5i,->(^,0. The y(t) curve 
intersects hyperbola h(s) at /32

(+)(V) ^d fi2
(r~)(s,t). 

Here again 02
(+) (s,t) >/52

(_) (s,t). 
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For the interval 7+^7 <y(t)9 we take the discon
tinuity of the integrand due to the branch point 7(0 
and write the whole 7 integral from 7_ to y(t). 

Let us now turn to the /3 integration and analytic 
properties of Ais)(s,t). As we increase t, the singular 
point /3i(+) (s,t) moves up along the left branch of ellipse 
8, reaches the lower limit of the (3 integration, 0=4, 
and drags down the (3 contour as it moves down along 
the right branch of ellipse 8. /3i(_)(,s,/) moves up along 
the right branch in the meantime. When fii{+) coincides 
with 0i(_), the coincidence gives the singularity corre
sponding to the leading Landau curve of the diagram 
in which lines 8 and 9 are reduced. Let us call this 
coincidence point fi(s). The y(t) curve is tangent to 
ellipse 8 at fi(s). It is easy to show that (5(s) is a mono-
tonically decreasing function of s and reaches 3 as s 
goes to infinity.5 As one increases / further, both /?i(+) 

and j3i(-) go over to the complex plane. 
Now if s is such that /3(s) <a>, /?i(+) reaches 03 before 

going over to the complex plane, then the coincidence 
gives rise to the singularity which cancels its counter 
part on the curve fa coming from the two-particle 
unitarity integral.3 

However, if s is such that 

Pt>P(s), (3t>a>, (12) 

02
(+) may catch the /3 integration when fix

(+) reaches 
the tangent point (3+ and then drag the contour along 
hyperbola h(s). (See Fig. 3.) As we increase t further 
/32

(+) will move down and coincide with the pole at j3=a) 
to give another singularity in the t plane. This singu
larity will then be the counter term to the one on the 
curve mentioned in Sec. II. We stress here that the 
inequalities in Eq. (12) are the necessary conditions 
for A(® to have the counter term in question. 

Using both numerical method and the asymptotic 

FIG. 2. Singularity curves in the y{5 plane. All points of intersection 
are denoted by their ordinates. The drawing was made at s= 16. 

6 J. C. Polkinghorne, Lectures in Theoretical Physics (W. A. 
Benjamin, Inc., New York, 1962), Vol. 1, p. 152. 
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FIG. 3. The case in which jS2
(+)C?,0 may drag the integration 

contour along hyperbola h (s). 

expression for fit and fi(s) for large s: 

P&a(l+l/s), 0(*)~3(1+25A), 
we can show that the inequality 

Pt>P(s) 

is not satisfied for the physical values of s under 
consideration. Therefore, there are no counter terms 
in the three-particle unitarity integral which would 
cancel the fa singularity from the two-particle inter
mediate state. 

We point out further that the fa curve lies entirely 
above /=9 with the asymptote for large s 

fc-9+ (1 A) (7«+18). 
This can also be shown by numerical work. 

A similar analysis may be made for the two-body 
unitarity cut across the internal lines 5 and 8, and also 
for the three-body cut across 9, 7, and 8. Singularity 
obtained in this analysis, if not cancelled, should also 
be included as the singularities of the whole amplitude. 
This, however, does not affect the above conclusion. 

The fa singularity is, thus, the singularity of the 
whole amplitude and lies entirely above t=9 in the st 
plane. The present result supports the argument that 
the anomalous threshold of the square part does not 
give any anomalies for the whole diagram. 

The preceding discussion hinges upon the fact that 
hyperbola h(s) is tangent to ellipse S and also that 
one can locate the tangent point by solving a fourth-
degree equation. For the general mass case, however, 
it seems difficult to tell whether curves 8 and h(s) are 
tangent or whether, even if they are, the tangent point 
can be located by an elementary method. 
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